首先对总人数不同时,分别设定杀手人数为1~5人,针对每种情况进行计算,求出在每日投票使存活角色等概率出局的情况下〖平民阵营〗的胜率,称之为“保底胜率”,得到下表:
总人数 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1杀手 | 25.00% | 46.67% | 37.50% | 54.29% | 45.31% | 59.37% | 50.78% | 63.06% | 54.88% | 65.90% | 58.11% |
2杀手 | 0.00% | 13.33% | 8.33% | 22.86% | 15.63% | 29.84% | 21.56% | 35.21% | 26.43% | 39.49% | 30.50% |
3杀手 | 0.00% | 0.00% | 0.00% | 5.71% | 3.13% | 11.43% | 6.88% | 16.45% | 10.55% | 20.78% | 13.95% |
4杀手 | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 2.54% | 1.25% | 10.97% | 3.12% | 15.53% | 5.25% |
5杀手 | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 3.46% | 0.52% | 2.93% | 1.45% |
该表格反应在不同情况下,〖平民阵营〗胜率的最小值,根据该表可绘得如下折线图:
由于杀手互知或共群的优势,考虑保底胜率在6.00%~25.00%之间的规则可视为可调整规则,在每个具体规则下进行平衡性整定,对保底胜率与容错数量综合考虑,如相对有利于〖平民阵营〗的控制判负条件、投票与遗言形式;相对有利于〖杀手阵营〗的控制互知/共群方式等。